TENSORINV
Download Flojoy Studio to try this app
  
 The TENSORINV node is based on a numpy or scipy function. The description of that function is as follows:
    Compute the 'inverse' of an N-dimensional array.
    The result is an inverse for 'a' relative to the tensordot operation "tensordot(a, b, ind)",
    i.e. up to floating-point accuracy, "tensordot(tensorinv(a), a, ind)" is the "identity" tensor for the tensordot operation.  Params:    a : array_like  Tensor to 'invert'.
Its shape must be 'square', i.e. "prod(a.shape[:ind]) == prod(a.shape[ind:])".   ind : int  Number of first indices that are involved in the inverse sum.
Must be a positive integer, default is 2.     Returns:    out : DataContainer  type 'ordered pair', 'scalar', or 'matrix'    
Python Code
from flojoy import flojoy, Matrix, Scalar
import numpy as np
import numpy.linalg
@flojoy
def TENSORINV(
    default: Matrix,
    ind: int = 2,
) -> Matrix | Scalar:
    """The TENSORINV node is based on a numpy or scipy function.
    The description of that function is as follows:
        Compute the 'inverse' of an N-dimensional array.
        The result is an inverse for 'a' relative to the tensordot operation "tensordot(a, b, ind)",
        i.e. up to floating-point accuracy, "tensordot(tensorinv(a), a, ind)" is the "identity" tensor for the tensordot operation.
    Parameters
    ----------
    a : array_like
        Tensor to 'invert'.
        Its shape must be 'square', i.e. "prod(a.shape[:ind]) == prod(a.shape[ind:])".
    ind : int, optional
        Number of first indices that are involved in the inverse sum.
        Must be a positive integer, default is 2.
    Returns
    -------
    DataContainer
        type 'ordered pair', 'scalar', or 'matrix'
    """
    result = numpy.linalg.tensorinv(
        a=default.m,
        ind=ind,
    )
    if isinstance(result, np.ndarray):
        result = Matrix(m=result)
    else:
        assert isinstance(
            result, np.number | float | int
        ), f"Expected np.number, float or int for result, got {type(result)}"
        result = Scalar(c=float(result))
    return result